Identification of neutral genes at pollen sterility loci Sd and Se of cultivated rice (Oryza sativa) with wild rice (O. rufipogon) origin.
نویسندگان
چکیده
Pollen sterility is one of the main hindrances against the utilization of strong intersubspecific (indica-japonica) heterosis in rice. We looked for neutral alleles at known pollen sterility loci Sd and Se that could overcome this pollen sterility characteristic. Taichung 65, a typical japonica cultivar, and its near isogenic lines E7 and E8 for pollen sterility loci Sd and Se were employed as tester lines for crossing with 13 accessions of wild rice (O. rufipogon). Pollen fertility and genotypic segregations of the molecular markers tightly linked with Sd and Se loci were analyzed in the paired F(1)s and F(2) populations. One accession of wild rice (GZW054) had high pollen fertility in the paired F(1)s between Taichung 65 and E7 or E8. Genotypic segregations of the molecular markers tightly linked with Sd and Se loci fit the expected Mendelian ratio (1:2:1), and non-significances were shown among the mean pollen fertilities with the maternal, parental, and heterozygous genotypes of each molecular markers tightly linked with Sd and Se loci. Evidentially, it indicated that the alleles of Sd and Se loci for GZW054 did not interact with those of Taichung 65 and its near isogenic lines, and, thus were identified as neutral alleles Sd(n) and Se(n). These neutral genes could become important germplasm resources for overcoming pollen sterility in indica-japonica hybrids, making utilization of strong heterosis in such hybrids viable.
منابع مشابه
Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. s...
متن کاملBroadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization
Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...
متن کاملMalaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, whe...
متن کاملOrigin of Oryza sativa in China Inferred by Nucleotide Polymorphisms of Organelle DNA
China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff.) and Asian cultivated rice (O. sativa L.) which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes,...
متن کاملMolecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.
The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics and molecular research : GMR
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2011